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The deleterious consequences of fatigue have motivated decades of research to understand the 

impact of inadequate sleep on cognitive performance. A key objective is to use insights from that 

research to develop predictive models that can serve as valid tools for managing work-rest 

schedules and making Go, No-Go mission decisions. Ultimately, this is about maximizing 

human performance and minimizing risk. In this paper, we describe a methodology that is 

moving us in the direction of achieving this goal, involving the integration of mathematical and 

computational process modeling approaches to understand how fatigue affects human cognitive 

processes. Mathematical models that capture the dynamics of the human arousal system are 

integrated with a cognitive architecture that instantiates a unified theory of the mechanisms of 

human cognition. The integration of these approaches leads to an enhanced ability to quantify the 

impact of fatigue on performance in particular tasks. We illustrate this by making principled, a 

priori predictions regarding how human performance in instrument flight with a Predator UAV 

synthetic task environment may change across 4 days without sleep. 
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A major goal of research on fatigue is to understand how 

and why cognitive processing degrades in enough detail 

to prevent potentially catastrophic breakdowns in 

performance. This is true whether fatigue is a 

consequence of the interaction of time awake and 

circadian rhythms (Dinges, 2004; Klerman & St. Hilaire, 

2007), or the result of extended time on task (Davies & 

Parasuraman, 1982; Hancock, Williams, Manning, & 

Miyake, 1995; Hockey, 1997; van der Linden, Frese, & 

Meijman, 2003). In this paper, we address degradations 

in performance associated with extended time awake and 

circadian rhythms, and thus preferentially use the term 

fatigue in the context of degradations to alertness 

stemming from these factors. However, we believe that 

our approach is readily generalizable to cognitive fatigue, 

as well as to other moderators of cognitive performance 

and decision making. As evidence for this, Ritter, 

Reifers, Klein, & Schoelles (2007) have used a similar 

methodology to account for the impact of stress on the 

cognitive system, and Gonzalez and colleagues (Fu, 

Gonzalez, Healy, Kole, & Bourne, 2006; Gonzalez, Fu, 

Healy, Kole, & Bourne, 2006) have taken an analogous 

approach to look explicitly at time-on-task effects. 

An extensive history of empirical research has 

documented changes in performance as individuals are 

deprived of sleep for long periods of time (e.g., Doran, 

Van Dongen, & Dinges, 2001; Habeck et al., 2004; 

Horowitz, Cade, Wolfe, & Czeisler, 2003; Lisper & 

Kjellberg, 1972). In addition, neuropsychological and 

neurophysiological research has explored the neural 

bases of these deficits, adding to our understanding of 

fatigue as well as helping to identify basic cognitive 

mechanisms and their neural correlates (e.g., Drummond, 

Brown, Salamat, & Gillin, 2004; Saper, Scammell, & Lu, 

2005; Thomas et al., 2000). Some of the insights from 

neurophysiological research have been captured by 

biomathematical models, which represent the dynamics 

of human alertness as a function of time awake and 

circadian rhythms (e.g., Hursh et al., 2004; Jewett & 

Kronauer, 1999; McCauley, Kalachev, Smith, Belenky, 

Dinges, & Van Dongen, 2009). These models are the 

centerpiece of the current generation of mathematical 

tools that can be used to prescribe work-rest schedules in 

order to maximize overall cognitive performance (e.g., 

Dean, Fletcher, Hursh, & Klerman, 2007; Hursh, 

Raslear, Kaye, & Fanzone, 2006). 

 

The biomathematical models currently in use and being 

developed abstract away from the physiological 

processes themselves, while capturing the overall 

influence of various factors on cognitive functioning, or 

alertness. All of these models are grounded in the so-

called two-process account of alertness, which places 

emphasis on sleep homeostasis and circadian rhythms 

(Borbély, 1982). However, they differ with regard to the 

way in which these processes are instantiated in the 
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models (i.e., what mathematical functions are used to 

represent the various influences). They also vary in other 

details. For instance, one model – the Circadian 

Neurobehavioral Performance and Alertness model, or 

CNPA – includes algorithms to represent the influence of 

light exposure on the circadian pacemaker (Jewett & 

Kronauer, 1999; Kronauer, Forger, & Jewett, 1999). This 

model also includes functions to represent sleep inertia, 

which is the general grogginess we experience shortly 

after awakening. 

 

A formal description of the biomathematical models is 

beyond the scope of this paper. More information is 

available in a special issue of Aviation Space and 

Environmental Medicine (Neri, 2004), including an 

overview of some general features of the models (Mallis, 

Mejdal, Nguyen, & Dinges, 2004), a detailed evaluation 

of the strengths and weaknesses of seven specific models 

(Van Dongen, 2004), and an assessment of challenges 

being faced as these models evolve (Dinges, 2004). In 

his evaluation, Van Dongen utilized a least squares 

scaling method to align the generic output of the models 

(e.g., estimates of “cognitive throughput” in CNPA) to 

particular dependent measures. This requirement exposes 

an important limitation of these models for making 

performance predictions. In discussing research 

challenges, Dinges (2004) describes the use of 

biomathematical models as “more descriptive curve-

fitting, than theoretically driven, hypothesis-generating, 

data-organizing mathematical approaches” (p. A182), 

and points to a need for increased attention to the 

association between alertness and cognitive processing. 

This is precisely where our research is situated. 

 

The use of biomathematical models in technologies such 

as the Circadian Performance Simulation Software, or 

CPSS, which embodies the CNPA model (Jewett & 

Kronauer, 1999; Kronauer et al., 1999), and the Fatigue 

Avoidance Scheduling Tool, or FAST, which intantiates 

a different model (Hursh et al., 2004; 2006), represents 

an important step toward achieving the goal of applying 

research on fatigue to reducing the likelihood of fatigue-

induced errors that can have costly consequences. Our 

research is intended to extend the explanatory power of 

such tools. For instance, biomathematical models 

currently do not address individual differences in the 

decrements in cognitive performance resulting from 

fatigue (Dinges, 2004; Van Dongen, Baynard, Maislin, & 

Dinges, 2004). This is a complex issue, as individual 

differences may arise from a variety of sources, only 

some of which are related to alertness or fatigue. In any 

task context, individuals will vary as a consequence of 

variability in knowledge, skill, or experience (e.g., Chase 

& Simon, 1973; Chi, 1978; Parasuraman, 1976). 

Differences may relate to characteristics like age or 

gender, and often vary as a function of task (Benbow & 

Stanley, 1980; Salthouse, 1992). Individual differences 

in susceptibility to fatigue must take into account such 

preexisting differences in performance. Below we 

present an example of how individual differences in 

strategy – a difference in knowledge – can affect the 

severity of the performance decrements associated with 

fatigue. 

 

In addition to individual differences, existing tools 

produce only a measure of overall cognitive functioning, 

such as “effectiveness” (Hursh et al., 2004) or “cognitive 

throughput” (Jewett & Kronauer, 1999). Though useful 

as descriptive models, such constructs do not allow for 

the generation of in situ performance predictions, as 

noted by Dinges (2004). To relate the output to some 

human performance measure, like reaction time or error 

probability, human performance data are required for the 

dependent measure of interest to drive a scaling process. 

Such data are often unavailable in applied contexts. 

Moreover, the scaling process provides no insight 

regarding the underlying cognitive mechanisms and how 

they are affected by fatigue, thereby limiting 

generalizability to other tasks and measures. All research 

is limited in one way or another, and in pointing out 

these limitations it is not at all our intention to denigrate 

or trivialize the important scientific contribution these 

models make to our understanding of fatigue. Once 

identified, however, weaknesses and limitations must be 

addressed. The models are, in fact, a critical component 

of our theoretical account, as we describe below. 

 

Our research is based on the premise that an accurate 

understanding of fatigue necessitates an account of how 

changes in overall alertness impact particular human 

information processing capabilities. Without 

understanding these relationships, it is difficult or 

impossible to anticipate how performance will decline in 

novel contexts. Such knowledge has important 

implications for determining optimal work/rest schedules 

and sleep requirements to maximize performance in a 

task-sensitive manner. Thus, the research described here 

focuses on extending the potential of existing 

biomathematical models of alertness by integrating them 

with a theory of the human information processing 

system, implemented as a set of computational 

mechanisms that instantiates the theory - a cognitive 

architecture (Anderson, 2007; Newell, 1990). This 

integration is explicitly targeted at grounding estimates 

of alertness in cognitive processes, which allows for the 

generation of quantitative performance predictions on 

particular tasks. 
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Integrating mathematical models of alertness with 

computational mechanisms in a cognitive architecture 

requires the specification of a detailed theory regarding 

the manner in which cognitive processing changes as 

alertness declines. That is, changes in alertness that are 

predicted by the mathematical model must be translated 

into precise changes to specific mechanisms and 

parameters in the architecture. Once this is 

accomplished, quantitative performance predictions are 

possible, which we use to evaluate the validity of the 

model through direct comparison to human performance 

data on the same task. Our approach also establishes a 

framework for understanding individual differences, 

allowing for an investigation of how cognitive ability, 

task knowledge, and susceptibility to the negative effects 

of decreased alertness interact in particular task contexts 

to produce observed differences in performance. In what 

follows, we describe our research approach and examples 

of how these efforts have led to a more comprehensive 

and predictive explanation of fatigued performance than 

has been possible previously. 

 

INTEGRATING METHODOLOGIES 

 

At the core of our research approach is the goal of 

developing cognitive architectures, which are unifying 

theories of cognition (Newell, 1990). Cognitive 

architectures represent, within a single computational 

system, a theory of a general set of mechanisms that 

enable information processing abilities in humans. As 

Newell (1990) put it: 

“A single system (mind) produces all 

aspects of behavior. It is one mind that 

minds them all. Even if the mind has 

parts, modules, components, or 

whatever, they all mesh together to 

produce behavior… If a theory covers 

only one part or component, it flirts with 

trouble from the start. It goes without 

saying that there are dissociations, 

interdependencies, impenetrabilities, and 

modularities… But they don’t remove 

the necessity of a theory that provides 

the total picture and explains the role of 

the parts and why they exist” (pp. 17-

18). 

 

We believe that this theoretical orientation is particularly 

relevant in the case of developing an understanding of 

fatigue. The effects of fatigue are widespread, with 

negative consequences observed in human performance 

across an extensive range of tasks and domains (Durmer 

& Dinges, 2005; Dinges, Baynard, & Rogers, 2005). 

With the 24/7 nature of modern society and the potential 

for disastrous errors stemming from fatigue (e.g., 

Caldwell, 2003; Mitler et al., 1988; Pack et al., 1995), 

there is a pressing need for research that puts the pieces 

together to explain in detail how and why human 

cognitive performance changes as alertness varies. To 

that end, we are developing a detailed computational 

process theory that allows us to explain the effects of 

fatigue on the cognitive system and to predict the 

resulting impact on performance. 

 

The cognitive architecture used in this research is ACT-

R, which stands for Adaptive Control of Thought – 

Rational (Anderson, 2007; Anderson et al., 2004). ACT-

R comprises a set of mechanisms representing a theory 

of the human information processing system. It is 

implemented in software and incorporates perceptual and 

motor modules, which allow ACT-R models to interact 

directly with numerous computer-based tasks by 

processing information available in the computer display 

and generating virtual mouse movements and keypresses. 

Because the perceptual, cognitive, and motor 

mechanisms are constrained by existing empirical data 

and quantitative theories regarding the capabilities and 

limitations of human cognition, the system produces 

behavior that corresponds closely with the performance 

of humans in a variety of contexts (for partial reviews see 

Anderson, 2007; Anderson & Lebiere, 1998; Anderson et 

al., 2004). 

 

Importantly, while ACT-R represents a unified theory of 

cognition, it does not constitute a complete theory of 

cognition. That is, ACT-R contains representations and 

processing mechanisms that instantiate a theory of 

human cognition, but the theory has not been extended to 

all aspects of human cognitive performance. Of 

particular relevance here is that ACT-R does not include 

mechanisms to represent human alertness nor the 

negative consequences associated with remaining awake 

for extended periods of time. Our research helps to 

extend the psychological validity and explanatory 

breadth of the architecture by leveraging well-validated 

theories from the existing literature, that quantify the 

dynamics of alertness as a function of these factors. 

 

An Emphasis on Mechanism 
 

While mathematical models characterize the dynamics of 

alertness across time, other theories have been proposed 

to explain the changes in human performance that are 

observed. One common theory posits that fatigue 

produces two primary impacts on cognitive performance 

– a generalized slowdown in cognitive processing and an 

increase in the frequency and duration of lapses in 

cognitive performance (e.g., Bratzke, Rolke, Ulrich, & 
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Peters, 2007; Dinges & Kribbs, 1991). In our research, 

we have attempted to identify how mechanisms may be 

instantiated within the human information processing 

system to capture such effects, and what the performance 

implications are of those mechanisms. To do this, we 

have focused first on relatively simple laboratory tasks. 

This allows us to address specific aspects of cognitive 

functioning that correspond to particular components of 

the ACT-R cognitive architecture. As a result, we have 

been able to translate descriptive accounts of the impact 

of fatigue into computational mechanisms that lead to 

quantitative performance predictions in our 

computational cognitive models. While the mechanisms 

that have been implemented produce both slowing and 

lapses in the model’s performance, they do so in 

unexpected ways. A description of our research in two 

task contexts follows to provide an introduction to the 

mechanisms that have been developed. 

 

The Psychomotor Vigilance Test (PVT) 

The Psychomotor Vigilance Test, or PVT (Dinges & 

Powell, 1985), requires participants to attend to a known 

location on a computer monitor and respond when a 

stimulus appears (simple reaction time). Stimuli appear 

at intervals that vary from 2-10 seconds. The task is 

straightforward to perform, but the duration of a session 

(10 minutes) leads to performance decrements, 

particularly when individuals are deprived of sleep. 

These decrements show a consistent pattern of longer 

response times and increased probabilities of lapses 

(significantly delayed responses or non-responses), 

combined with higher proportions of false starts 

(responding before the stimulus appears). These changes 

are quite sensitive to changes in alertness stemming from 

time awake and circadian rhythms (e.g., Doran et al., 

2001; Dorrian, Rogers, & Dinges, 2005; Van Dongen & 

Dinges, 2005). 

 

The cognitive demands of the PVT are circumscribed 

enough to allow for a focused investigation of the impact 

of fatigue on a particular component of ACT-R – the 

production system. The production system in ACT-R 

represents a serial bottleneck in central cognition. 

Productions, in the form of if-then rules, are matched 

against the current state of the system. One of the 

productions is selected using an expected utility function 

(see Eq. 1), and then executed (fired) as long as it 

exceeds the utility threshold, Tu. The production serves to 

modify the system state in some way, and the cycle 

begins again. The state of the system is represented by 

the contents of buffers within ACT-R, which hold 

representations of internally maintained information 

including information encoded from the external 

environment. For the PVT, buffers hold information 

about the task context (i.e., doing the PVT), and also the 

task state (i.e., what is on the screen, where the item is 

located). The equation for expected utility is: 

 

ε+−= iii CGPU   Eq. 1 

 

In the equation, Pi is the probability of achieving the goal 

with production i, Ci is the anticipated cost (in time) 

associated with using production i to achieve the goal, 

and G is a global variable that we associate with the 

concept of alertness from the sleep research literature. 

Finally, ε is a noise parameter that adds stochasticity to 

the utility computation. 

 

To account for changes in human performance on the 

PVT under conditions of fatigue, we decrement the G 

parameter to reflect decreased levels of alertness. These 

reductions in G make it possible that on a given cognitive 

cycle, no productions will have a utility value that 

exceeds the utility threshold, Tu, resulting in no goal-

directed cognitive processing for that cognitive cycle. 

We refer to these very brief gaps (c. 50 ms) in processing 

as microlapses. Because there is noise in the computation 

of expected utility (ε), it is possible for a microlapse to be 

followed by a cognitive cycle where a cognitive action is 

successfully executed. 

 

Importantly, this mechanism can produce both 

slowdowns in cognitive processing and longer cognitive 

lapses. Intermittent microlapses will manifest as slowing, 

by causing response times to increase by a relatively 

small amount. With longer sequences, significantly 

delayed responses and failures to respond (i.e., lapses 

and non-responses) occur. In fact, with this mechanism, 

the ACT-R model exhibits behavior that closely 

resembles human performance under conditions of 

fatigue on these measures (see Gunzelmann, Gross, 

Gluck, & Dinges, 2009). The model provides a new 

perspective on how underlying information processing 

may change as a consequence of fatigue and how these 

changes lead to performance differences that are 

observed in humans deprived of sleep. 

 

The Walter Reed Serial Addition/Subtraction Task 

(SAST) 

We have also used ACT-R to investigate possible effects 

of fatigue on accessing and using declarative knowledge 

(Gunzelmann, Gluck, Kershner, Van Dongen, & Dinges, 

2007). The task context for this research has been the 

Walter Reed Serial Addition/Subtraction Task (SAST; 

Thorne, Genser, Sing, & Hegge, 1985). In this task, two 

single-digit numbers and an operator (+ or -) are 

presented in succession for 200 ms each, with 200 ms 

intervals between items. The task is to perform the 



RESEARCH ARTICLE: INTEGRATING MODELING APPROACHES TO UNDERSTAND FATIGUE 

18                                                             COGNITIVE TECHNOLOGY ● VOLUME 14 ● ISSUE 1 

operation (<N1> <Operator> <N2>), and respond with 

the ones digit if the answer is non-negative. If the answer 

is negative, participants are instructed to first add ten, 

and then to respond with this new result, which will be a 

positive one-digit number. 

 

As with all ACT-R models, the central production 

system plays a critical role in the model’s performance. 

In this model, however, ACT-R’s declarative memory 

module is also crucial, since the model represents 

knowledge about numbers and math facts as chunks in 

declarative memory. These chunks have activation 

values, which represent the history (recency and 

frequency) of use as well as the influence of the current 

context, all of which impact the speed and probability of 

retrieval. Our model assumes adult-level experience with 

simple mathematical calculations (derived from Lebiere, 

1999), with the context defined by the problem elements 

presented on each trial. The equation for activation in 

ACT-R is: 

 

σ+−+= ∑ ip

j

jijii DSWBA   Eq. 2 

Bi represents base-level activation, which reflects the 

recency and frequency with which chunk i has been 

accessed. The summation represents the influence of 

context, with spreading activation, W, divided equally 

across the j elements of the goal. Activation spreads to 

chunk i based upon the strength of association (Sji) 

between element j in the goal and chunk i. Errors may be 

generated in this process when the wrong chunk is 

retrieved from memory (error of commission), which can 

occur because of the noise in activation values (σ). Items 

that are similar to each other are more likely to be 

confused – a mechanism referred to as partial matching 

(see Anderson & Lebiere, 1998 for a thorough 

description). This is reflected in the Dip term, which 

decreases activation as a function of dissimilarity 

between the chunk i and the request p. In our model, 

similarity between numbers declines exponentially as the 

difference between them increases. 

When a retrieval request is made by the central 

production system, the chunk in declarative memory with 

the highest activation (including partial matching and 

noise) is selected. As in procedural knowledge, a 

retrieval request in declarative memory is only successful 

if the activation of the chunk exceeds a threshold, 

referred to as the retrieval threshold, or Tr. If not, nothing 

is retrieved (error of omission). When a chunk is 

successfully retrieved, its activation influences the speed 

of retrieval through the following equation: 

 
iA

i FeT
−

=   Eq. 3 

Here, Ai is the activation of the chunk i, and F is a 

scaling factor (the default value of 1 is used here). 

Retrieval times play an important role in the SAST 

model at various points in the solution process. The 

model uses stored knowledge of numbers, mathematical 

operators, and addition and subtraction facts to determine 

the response on each trial. To encode a number or 

operator from the screen, the model attends to it by 

providing requests to ACT-R’s vision module, and then 

uses the visual representation to retrieve the symbolic 

representation of the number/operator from memory. 

Once the entire problem has been presented, ACT-R uses 

the symbolic information to guide the retrieval of a 

chunk representing an addition or subtraction fact in 

memory. The result encoded in the math fact that is 

retrieved is then used to respond, or as the basis for 

performing the subsequent addition if the result is 

negative. 

 

In extending our fatigue theory to ACT-R’s declarative 

knowledge, we implemented it in a way that is analogous 

to the procedural mechanism described above. 

Specifically, activation values in declarative knowledge 

are decreased to represent greater fatigue, corresponding 

to lower utility values for procedural knowledge. This is 

achieved by decreasing the base-level activation (Bi) 

through manipulation of a scaling parameter associated 

with the calculation of this value. 

 

As activation values decrease, retrievals take longer and 

are less likely to succeed. Longer retrieval times result in 

longer response times, simulating cognitive slowing. 

Because the knowledge in the SAST is well-learned, 

failures to retrieve the necessary information are 

relatively rare. However, during the encoding phase, 

longer retrieval times increase the likelihood of errors by 

making it more likely that the model will fail to encode 

portions of the stimulus. Because presentation time is 

short (200 ms), more time taken to retrieve the symbolic 

representation of one of the numbers can lead to a failure 

to encode a subsequent item. 

 

Lastly, we note that the procedural microlapse 

mechanism described for the PVT model was included in 

the SAST model, reflecting an aspiration to achieve a 

more comprehensive theory. Of course, microlapses can 

also delay the production of a response and increase the 

likelihood of an encoding lapse, but the shorter duration 

of the SAST (typically less than 3 minutes for a 50-

problem session) and the faster pacing of the task (200 

ms between problem elements) serve to limit 

opportunities for procedural activity to decline, 

minimizing the impact of that mechanism in this model. 

Thus, it is changes in the accessibility of declarative 
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knowledge that drives the changes in the model’s 

performance. As people become increasingly fatigued, 

both response times and errors increase in the SAST. The 

set of mechanisms described here accurately captures the 

performance decrements exhibited by human participants 

across an extended period of sleep deprivation 

(Gunzelmann et al., 2007). 

 

Integrating Mathematical Modeling 

 

So far, the discussion has focused on the computational 

mechanisms we have developed to account for the effects 

of fatigue. However, a critical piece of this research 

involves linking changes in information processing 

mechanisms to predictions about overall cognitive 

functioning derived from biomathematical models of the 

human arousal system that were mentioned above. 

Models that can predict the dynamics of human alertness 

are essential for making a priori predictions about 

performance in particular task contexts given particular 

histories of wakefulness and sleep. 

 

To integrate the predictions of these models into ACT-R, 

linear functions were estimated to map predictions of 

overall alertness to each of the relevant parameters in the 

architecture. Thus, alertness maps directly to values of G 

in the procedural system and to the scaling parameter for 

computing base-level activation (Bi) in the declarative 

system. Though we have not emphasized them in this 

paper, alertness also influences the threshold parameters 

in each of these systems, representing effortful 

compensation in the production system (Tu) and a 

secondary consequence of fatigue in declarative memory 

(Tr). Table 1 illustrates this integration. It presents the 

predicted level of alertness from the CNPA model for 

0800 after a full night’s sleep, and after 1, 2, and 3 days 

of total sleep deprivation (TSD). It also presents the 

slope and intercept for the linear function mapping that 

value onto the four parameters that vary in the SAST, 

including the resulting parameter values for the model at 

0800 on each day of the study. These parameter values 

are the ones used in generating performance predictions 

in the aircraft instrument flight basic maneuvering task 

described below. Incorporating the mathematical models 

of alertness serves to enhance the theoretical constraint 

on the account, which reduces degrees of freedom in 

fitting the data and extends the predictive capacity of the 

model. Further details can be found in Gunzelmann et al. 

(2007; 2009). 

As the slopes presented in Table 1 suggest, changes in 

activation across days of sleep deprivation are primarily 

responsible for the performance changes in the model. In 

Gunzelmann et al. (2007) we included the other 

parameters to emphasize the goal of developing a 

comprehensive, general, and integrated theory of the 

impact of alertness on the cognitive system. Significant 

research is needed to understand the interactions of the 

parameters with each other, with internal factors like 

motivation and interest, and with external factors like 

task dynamics and time on task. 

The mapping functions in Table 1 that link alertness to 

ACT-R parameters were optimized on the basis of 

existing empirical data for the SAST. However, the focus 

of this paper is on how the methodology enables making 

in situ, a priori performance predictions in novel tasks. 

In the next section we provide a use case for this 

capability by integrating mechanisms for fatigue into an 

existing model that executes basic maneuvers in a 

Predator Unmanned Aerial Vehicle (UAV) Synthetic 

Task Environment (STE). Such a generalization is not 

possible using biomathematical models of alertness in 

isolation, because data are not available to support a 

scaling process to map alertness onto measures like the 

probability of failure or deviation from optimal 

performance in this task context. 

 

 

Table 1. Integration of biomathematical predictions of alertness with ACT-R. 

Notes: G is the global parameter in ACT-R’s utility equation (Eq. 1) and Tu is the utility threshold. Bi is the base-level activation 

(Eq. 2) for declarative knowledge and Tr is the retrieval threshold. For each day of total sleep deprivation (TSD), predictions of the 

Jewett & Kronauer (1999) model for cognitive throughput for 0800 on that day are shown in parentheses under the column label, 

which are the inputs to the linear functions producing the parameter values. In conjunction with the scaler parameter for Bi, the 

corresponding Bi value is presented in parentheses.. 

 

Linear Function 

Parameter Values Used in Model 

Baseline Day 1 TSD Day 2 TSD Day 3 TSD 

Parameter Intercept Slope (0.889) (0.521) (0.159) (0.038) 

G 4.21 0.03 4.24 4.23 4.22 4.21 

Tu 2.39 -0.08 2.31 2.34 2.37 2.38 

Scaler (Bi) 2.60 23.40 117.04 (4.45) 74.00 (3.58) 31.64 (2.65) 17.41 (2.05) 

Tr -0.06 -0.62 -0.61 -0.39 -0.16 -0.09 
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PERFORMANCE PREDICTION 

IN THE CONTEXT OF SIMULATED PREDATOR 

BASIC MANEUVERS 

To demonstrate the potential of our approach for 

predicting cognitive performance under conditions of 

fatigue, this section describes a set of predictions that 

have been made regarding degradations in human 

instrument-flight piloting resulting from an extended 

period of sleep deprivation. The particular task context 

used here is a Predator unmanned aerial vehicle (UAV) 

synthetic task environment (STE). This is a complex task 

simulation requiring control of the UAV from a remote 

location using a narrow field-of-view video. In the basic 

maneuvering task, no out-of-cockpit view is provided, 

necessitating reliance on instrument readings to 

successfully perform the task. The STE incorporates a 

high-fidelity model of the aerodynamics of the Predator 

RQ-1A System 4 UAV (Martin, Lyon, & Schreiber, 

1998). Prior research using this STE resulted in three 

ACT-R model variants that fly a series of “basic 

maneuvers” requiring carefully controlled, constant-rate 

changes to the Predator’s altitude, airspeed, and/or 

heading (Gluck, Ball, & Krusmark, 2007; Gluck, Ball, 

Krusmark, Rodgers, & Purtee, 2003). The heads-up 

display and task screen are shown in Figure 1. Ideal 

performance is obtained when control settings (i.e., 

power, pitch, and bank) are set appropriately to achieve 

particular flight performance characteristics (i.e., 

airspeed, altitude, and rate of heading change). 

 

The three model variants represent three different 

strategies for performing the task, varying in terms of 

whether they know about appropriate control settings for 

the maneuvers and how much they attend to the control 

instruments at the beginning of the maneuvers. The 

Performance variant (Model P) does not know about the 

use of control settings in instrument flight and attends 

exclusively to the Performance instruments throughout 

the maneuver. The Control and Performance variant 

(Model CP) does know about control instrument settings 

and divides its attention between the control and 

performance instruments as it performs a crosscheck of 

all of them over the course of each maneuver. The 

Control Focus and Performance variant (Model CFP) 

also knows about control instrument settings, but at the 

beginning of each maneuver this model focuses 

explicitly on getting the control instruments set to desired 

values. After establishing desired control settings, Model 

CFP then divides its attention across the control and 

performance instruments as it engages in a crosscheck of 

the instruments throughout the remainder of the 

maneuver. 

The implementation of the CFP strategy is based on the 

process Air Force pilots are trained to use for instrument 

flight and has been validated through comparison with 

expert pilot performance (Gluck et al., 2003). The CP 

and P model variants represent less sophisticated 

strategies, but are not necessarily intended to represent 

strategies used by particular individuals for the task 

(Gluck et al., 2007). More detailed descriptions of the 

validation of the CFP model, rationale for these model 

variants, and additional implementation details are 

available in Gluck et al. (2003, 2007) and in Ball, Gluck, 

Krusmark, and Rodgers (2003). 

We implemented the fatigue mechanisms described 

earlier directly into these three models. Importantly, the 

ACT-R models that pilot the simulated UAV are tightly 

integrated with the STE. The models move visual 

attention around the screen and generate virtual stick and 

throttle movements, which are relayed directly to the 

STE. Thus, the performance of the models can be 

measured in exactly the same manner as human 

performance, since the model flies the maneuvers and the 

STE generates output data, just as it would with a human 

participant. As an initial illustration of the capacity to 

make principled predictions regarding the impact of 

fatigue in a complex naturalistic task such as this, we 

used the prescribed parameter values taken directly from 

the SAST for Baseline (0 hours without sleep), 24, 48, 

and 72 hrs without sleep (see Table 1; Gunzelmann et al., 

2007). We use the parameter values from the SAST 

because the duration of each SAST session in the 

available empirical data are close to the same as the basic 

maneuvering tasks, which last 70 or 100 seconds, 

depending on the particular maneuver. Also, the 

relatively rapid pace of the SAST is a closer match to the 

dynamic piloting task than the PVT, which has long time 

periods with no environmental activity 

We report two model performance measures. First is the 

frequency of “failing” the maneuver, which means the 

model did not remain within a pre-determined deviation 

threshold for each of the flight performance dimensions 

(altitude, heading, and airspeed). These thresholds were 

selected by the original developers of the STE to be 

challenging enough to stress the capabilities of even 
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experienced pilots, but still be reasonable performance 

targets for that population (Schreiber, Lyon, Martin, & 

Confer, 2002). The second performance measure is a 

normalized, aggregate measure of deviation from optimal 

performance, across those same three performance 

dimensions. Optimal performance requires precisely 

maintaining specific rates of change for altitude, heading, 

and airspeed throughout the duration of the maneuver. It 

may be theoretically possible to perform optimally in this 

task, but in practice the quality of a person’s or model’s 

performance on each trial is measured as a deviation 

from that optimal level. 

 

 

 

 
 

     
 

Figure 1. Display components of the Predator Unmanned Aerial Vehicle (UAV) Synthetic Task Environment. The top 

panel illustrates the heads-up display (HUD), which replicates the display used on the actual Predator UAV. The bottom-

left panel illustrates the task window before the trial starts, indicating the task goals, and providing information about 

bank angle and time remaining. Finally, the bottom-right panel shows the feedback screen, showing deviation from optimal 

performance for each of the three measures of interest, (1) altitude, (2) airspeed, and (3) heading. The pass/fail 

determination is made based upon whether the average deviations on each of these measures remain within a prespecified 

limit, shown in red on the feedback screen. 
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Table 2. Performance for Each of the Model Variants at Baseline, and after 1, 2, and 3 Nights without Sleep. 

Model Dependent Measure Hours Without Sleep 

0 24 48 72 

Model P Failures 42 48 47 49 

Aggregate Z-Score (SD) 3.40 (1.92) 3.85 (1.77) 5.11 (1.69) 6.95 (1.51) 

Model CP Failures 42 43 48 50 

Aggregate Z-Score (SD) 3.06 (2.91) 4.30 (3.41) 6.81 (4.95) 10.79 (5.08) 

Model CFP Failures 11 13 25 38 

Aggregate Z-Score (SD) 1.22 (1.29) 1.05 (1.37) 1.48 (2.06) 4.09 (3.86) 
 
Notes: P = Performance Model.  CP = Control and Performance Model.  CFP = Control Focus and Performance Model. Baseline simulates 

normal, rested performance. Days 1, 2, and 3 simulate performance after that many days of total sleep deprivation. Failures are the number of 

trials out of 50 in which performance exceeded a pre-defined threshold for deviation from optimal maneuvering.  Z-Agg are normalized model 

performance scores aggregated across altitude, heading, and airspeed. Z-scores were computed using means and standard deviations from the 

sample of expert-level human pilots previously reported in Ball et al. (2003), and in Gluck et al. (2007). 

 

 

Each of the three model variants was run at each of the 

four levels of sleep deprivation on the most difficult 

maneuver built into the Predator STE, which requires 

constant-rate changes to altitude, heading, and airspeed 

simultaneously over a 90-second period (see Figure 1). 

Due to the stochastic architectural characteristics in 

ACT-R, each model variant was run through 50 

iterations at each level of sleep deprivation to ensure an 

adequate estimate of its central tendency and variability 

at the different fatigue levels. Table 2 shows the 

performance predictions. 

 

At Baseline, the models’ rank order performance results 

are as we would expect given prior results with these 

models (Gluck et al., 2007). CFP is the best performing 

model and P is the worst (see Table 2). The fatigue 

simulations produce a main effect of fatigue level F(3, 

441) = 79.77, p < .001 (MSE = 10.036), and also reveal 

an interaction between model variant and fatigue level 

F(6, 441) = 8.24, p < .001 (MSE = 10.036), with the 

largest impact of fatigue on Model CP. In contrast, 

Model CFP is noteworthy in that performance remains 

quite good even after two days without sleep, then spikes 

up dramatically after a third day of sleep deprivation. 

Even after three days of sleep deprivation, however, 

predicted performance using the CFP strategy only 

degrades to approximately the level of performance 

observed at Baseline for the other two model variants. 

This reflects the superiority of the CFP strategy for 

carefully controlled instrument flight maneuvers and 

suggests that it is more robust in the face of sleep 

deprivation. In addition, this result illustrates the point 

from the introduction that individual differences in 

baseline knowledge or strategies can have important 

implications for how decreased alertness impacts 

performance. We address this, and other points, in the 

conclusion. 

 

CONCLUSIONS 

 

The models that fly the basic maneuvers in the UAV 

STE vary in terms of whether they have knowledge 

about the relationship between control settings and 

performance characteristics, as well as in the 

sophistication with which this knowledge is used. The 

most naïve model, Model P, has no knowledge of the 

relationship between control settings and performance 

characteristics of the plane. Model CP does have this 

knowledge, but does not use knowledge of appropriate 

control settings to deliberately establish them when the 

trial begins. Model CFP has knowledge of the correct 

control settings, and also focuses on establishing 

appropriate control settings early in the trial, which tends 

to set the plane on an appropriate course, leading to 

better performance in general. 

 

It is interesting that our fatigue mechanisms have varying 

impacts for these different models. As in the model for 

the SAST, the main impact of decreased alertness in the 

model is to reduce the activation of declarative 

knowledge, leading to longer retrieval times and 

occasional retrieval failures (when activation fails to 

exceed the threshold). This has the general effect across 

all three models of slowing down the crosscheck process, 

leading to slower compensations and adjustments to keep 

the plane’s flight characteristics in line. For Model CFP, 
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this effect is minimized due to the initial focus on 

establishing appropriate control settings. Since these 

initial adjustments tend to set the UAV on a path that is 

close to the desired one, the adjustments made during the 

remainder of the trial are typically minor changes that 

serve to optimize the UAV’s performance given the 

goals of the maneuver. Of course, with greater levels of 

fatigue, even the initial process of establishing control 

settings is delayed significantly, as are the subsequent 

minor adjustments, leading to larger decrements in 

performance if not catastrophic failure. 

 

For the other two models, performance is more 

dependent on attending to the instruments and making 

continual adjustments to bring the UAV’s performance 

in line with the desired characteristics. This dependence 

is more pronounced in Model CP, which is a result of the 

knowledge it has regarding control instrument settings. 

Accessing this knowledge is costly in terms of time, and 

becomes even more costly as alertness declines. Because 

Model P is less dependent on declarative knowledge for 

making adjustments to control the UAV, its performance 

is impaired less as a result of the reduced activation of 

declarative knowledge stemming from fatigue than is 

Model CP. However, it is also the case that Model P 

instantiates the least effective strategy initially, and so its 

performance is never particularly good. 

 

Finally, note that the model predictions reported here are 

real predictions. Unfortunately, there are no empirical 

data available regarding the effects of sleep deprivation 

on this basic maneuvering task. Thus, we are unable to 

validate the predictions the models make. However, what 

is most important about this research is that it 

demonstrates real progress in the direction of precise, a 

priori quantitative performance predictions. Our 

approach to accomplishing this combines mathematical 

and computational architectural modeling approaches. 

The use of a cognitive architecture to represent the 

mechanisms of human information processing maps 

overall alertness onto cognitive functions that translate 

into task performance. Biomathematical models of 

alertness are fundamentally limited in this regard, since 

they do not incorporate a theory of human cognition. 

They cannot be used to make performance predictions in 

a novel context without being scaled to existing data. 

Similarly, cognitive architectures, including ACT-R but 

also all of the others, are currently limited in the sense 

that they do not incorporate a theory of how alertness 

varies with fatigue level or how those variations 

influence cognitive processing. By bringing these 

modeling approaches together, these limitations can be 

overcome, and quantitative predictions of task 

performance under fatigued conditions are possible. 
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